(Re)configuring IM Integration


Last Update: August 16th, 2016.

powershellNote: The procedure has changed for Exchange 2016, which can use overrides to make this setting persistent. For these instructions, consult this article.

Anyone who has configured Exchange 2013 IM integration with Lync Server at some point has to modify the web.config file on the Mailbox servers to configure OWA with the proper certificate for enabling IM. Another thing (read: nuisance) is that when you have configured IM integration and you apply a Cumulative Update to Exchange 2013, the web.config will be overwritten, in which case you need to reapply those changes to the web.config file.

This is where the script Configure-IMIntegration.ps1 might come in handy.

Requirements
Using the script requires Exchange 2013 and Lync Server. You need to provide the Lync pool and the Mailbox server you want to configure needs to have a valid certificate assigned to IIS (or UM) service. The script will modify the web.config remotely using the system share (e.g. C$), using the location of the Exchange installation, and uses WMI to recycle the OWA Application Pool in IIS. It will create a backup of the web.config before modifying it.

Note that the script does not perform the following steps:

  • It does not perform the Lync Server parts to configure IM integration, e.g. configure Exchange as a trusted application.
  • It does not configure Lync Server as an partner application for Exchange (Configure-EnterprisePartnerApplication.ps1).

Usage
The script Configure-IMIntegration.ps1 uses the following syntax:

.\Configure-IMIntegration.ps1 [-Server <String>[]] -PoolFQDN <String> [-AllCAS] [-AllMailbox] [-UM] [-Thumbprint <String>]

A quick walk-through on the parameters and switches:

  • Server specifies the server(s) to configure. When omitted, it will configure the local server. This parameter is mutually exclusive with AllMailbox.
  • AllMailbox switch specifies to configure all Mailbox servers. This switch is mutually exclusive with Server.
  • AllCAS switch specifies to enable IM integration on all Client Access servers.
  • PoolFQDN specifies the FQDN of the Lync Pool to use. This parameter is required.
  • UM specifies that the script should look for a certificate assigned to UM services instead of IIS (default).
  • Thumbprint to manually specify the thumbprint of the certificate to use.

So, suppose you want to quickly reconfigure IM integration on a Mailbox server after applying a Cumulative Update, you can use:

.\Configure-IMIntegration.ps1 -PoolFQDN lync.contoso.com –Server exchange01.contoso.com

image

Or, you can quickly configure Mailbox servers and CAS servers for IM integration after performing the required steps to configure the trusted application settings and installing and assigning the certificate for UM:

.\ Configure-IMIntegration.ps1 -PoolFQDN lync.contoso.com -AllMailbox –AllCAS

image

Also, in the example above, the CAS servers had already been enabled for IM.

Download
You can download the script from the TechNet Gallery here.

Feedback
Feedback is welcomed through the comments. If you got scripting suggestions or questions, do not hesitate using the contact form.

Revision History
See TechNet Gallery page.

Exchange-Processor Query Tool: PowerShell Edition


powershellLast Update: Version 1.2, July 9th, 2018.

Anyone sizing for Exchange Server 2013/2016 or even still Exchange Server 2010, using the Server Role Requirements Calculator, has to determine processor requirements at some point. This is accomplished by looking up the SPECint_rate2006 score of the planned processor configuration and matching that against the calculated number of required megacycles by the calculator. To account for fail-over situations, additional overhead needs to be added to the number of megacycles. The process as part of the overall sizing has been explained in detail by Jeff Mealiffe here.

The Exchange consultants’ Swiss army knife when determining SPECint rates is the Exchange Processor Query Tool, an Excel sheet designed by Scott Alexander from Microsoft, which allows you to easily look up and determine the SPECint_rate2006 value by inputting a processor model. While still useful, the tool has been out there since 2011. Also, it would be nice sometimes to see which systems are eligible for a certain sizing specification, rather than validating if the planned processor configuration meets the sizing requirements.

So, I wrote a PowerShell script which can query the SPECint rates for you. Because the rating scores are returned as objects, you can perform additional tasks using PowerShell functionality, such as:

  • Use additional criteria, such as vendor, min/max number of cores, etc.
  • Calculate the average SPECint2006 Rate Value for a certain CPU/cores configuration.
  • You can use the SPECint value calculated by the Server Role Requirements Calculator  to find hardware configurations which meet the required total megacycles requirements, optionally including a required overhead percentage.
  • You can select if you are sizing for Exchange Server 2010 or Exchange Server 2013.

Requirements
The script requires PowerShell and internet access to query the SPECint database.

Usage
The script is called Exchange-PQT.ps1, in honor of the Processor Query Tool (PQT).  The syntax is as follows:

Exchange-PQT.ps1 [-CPU <String>] [-Vendor <String>] [-System <String>] [-Overhead <Int32>] [-MinMegaCycles <Int32>] [-Type <String>] [-MinCores <Int32>] [-MaxCores <Int32>] [-MinChips <Int32>] [-MaxChips <Int32>] [<CommonParameters>]

The information returned and which you can use for post-processing is: Vendor, System, CPU (processor description), Cores, Chips (number of CPU’s), CoresPerChip (number of Cores per CPU), Speed, Result, Baseline, MCyclesPerCore (megacycles per core), MCyclesTotal (total megacycles), OS and Published. Note that megacycles calculations are based on the selected Exchange version, by default this is Exchange Server 2013.

A quick walk-through on the parameters:

  • CPU, Vendor or System can be used for partial matching on the respective attribute.
  • Type specifies what calculation to perform. Possible values are 2010 for Exchange Server 2010 and 2013 for Exchange Server 2013. Default value is 2013.
  • MinCores/MaxCores/Cores can be used to only return information for systems with less, more or a specific number of cores.
  • MinChips/MaxChips/Chips can be used to only return information for systems with this more, less or a specific number of CPU’s.
  • MinMegaCycles can be used to specify a threshold for the total megacycles value for returned items, using the specified Type for calculations.
  • Overhead can optionally be used to take into account a certain percentage for megacycles overhead. Default is 0 (0%).
  • Ratio/vCPU can be used to specify the vCPU:pCPU ratio. For example, specify a Ratio of 2 to use a 2:1 vCPU to pCPU ratio. Default is 1 (1:1). Use the vCPU paramete to specify the the number of vCPU allocated.

Few notes:

  • MinCores/MaxCores and MinChips/MaxChips are mutually exclusive, because we can not specify both in the query against the SPECint database. However, you can use additional filtering on objects returned in the pipeline to distill information, e.g.
    Exchange-PQT.ps1 –MaxCores 32 –MaxChips 8 | Where { $_.Cores –ge 4 –and $_.Chips –ge 2}.

    Do note that usage of these parameters is recommended when possibe, as it will minimize the result set from SPECint.

  • Make sure you set Type to 2010 when sizing for Exchange 2010.

Examples

Lookup the specifications of the server used by Jeff in his sizing example (Hewlett-Packard DL380p Gen8 server with Intel Xeon E5-2630 processors @2.30GHz):

.\Exchange-PQT.ps1 -System 'DL380p Gen8'  -CPU 2630 | select System,MCycle*

Search all specs for systems from Dell containing x5470 processors and return megacycle information for Exchange 2010 calculations:

.\Exchange-PQT.ps1 -CPU x5470 -Vendor 'Dell Inc.' -Type 2010 | Select System,*cycle*

image

Calculate average SPECint 2006 rate values for  hex-core x5450 systems:

.\Exchange-PQT.ps1 -CPU x5470 | Where { $_.Cores -eq 8 } | Measure -Average Result

Search all specs for Dell systems using x5670 CPUs, with a minimum total of 16,000 megacycles and 20% megacycle overhead:

.\Exchange-PQT.ps1 –Vendor Dell -CPU x5670  -MinMegaCycles 16000 -Overhead 20 

image

To calculate when using a non-1:1 vCPU:pCPU ratio, use Ratio in combination with vCPU. For example, to calculate the average SpecInt rate for 20 core systems with an E5-2670 CPU, using a 2:1 vCPU:pCPU ratio, allocating 12 vCPU cores:

.\Exchange-PQT.ps1 -CPU 'e5-2670' -Cores 20 -Ratio 2 -vCPU 12 | Measure-Object -Average -Property Result

Download
You can download the script from the TechNet Gallery page or  GitHub.

Feedback
Feedback is welcomed through the comments. If you got scripting suggestions or questions, do not hesitate using the contact form.

Revision History
See TechNet Gallery page.

Impersonation: To be, or pretend to be


imageAs frequent readers of this blog may know, I made several Exchange-related scripts available to the community. Some of these scripts make use of what is called Exchange Web Services (EWS). I receive lots of questions via e-mail and through the comments about configuring impersonation or permission-related issues when running those scripts, which support delegated access as well as impersonation, against mailboxes. This blog shows how can configure delegation, why you should use impersonation, and how to configure impersonation on Exchange 2007 up to Exchange 2013 and Exchange Online in Office 365.

Introduction

EWS provides functionality to allow client applications, such as Outlook or OWA apps, tools, or in my case scripts, to communicate with Exchange server. Even Exchange itself makes uses of EWS when performing Free/Busy lookups by the Availability services for example. EWS was introduced in Exchange Server 2007 back in December 2006, which now seems decades ago.

Some of these EWS scripts or tools access or even manipulate mailbox contents. In the MAPI era, in order for you to access a mailbox that’s not yours, you required delegated full access permissions. These permissions could be granted at the mailbox, mailbox database or mailbox server level. The latter would grant you access to all mailboxes hosted in that mailbox database. For example, to grant an account Archibald full access permission on the mailbox of Nestor, you would typically use something like:

Add-MailboxPermission –Identity Nestor –User Archibald –AccessRights FullAccess –InheritanceType All

Note: Specifying InheritanceType is sometimes overlooked. Not specifying it only configures an Access Control Entry (ACE) on the top level folder (InheritanceType None), resulting in symptoms like scripts not processing subfolders for example.

EWS enables you to use another access method besides delegation, which is impersonation. Impersonation, as the many online available dictionaries may tell to you, is ‘an act of pretending to be another person for the purpose of entertainment or fraud’ or something along those lines. In the Exchange world, this means you can have an account which has the permission to pretend to be the owner of the mailbox, including being subject to the same effective permissions. So, if for some reason the owner only has Read permission on a certain folder, so will the impersonator. Typical use cases for impersonation are for example applications for archiving, reporting or migration, but also scheduled scripts that need to process mailboxes could be one.

Before we dive into the configuration itself, first some of the reasons why you should should prefer Impersonation over delegated access:

  • No mailbox needed for the account requesting access.
  • Throttling benefits, since the operation is subject to the throttling policy settings configured on the mailbox accessed, not the throttling policy configured on the mailbox requesting access. To bypass these delegate limits, one had to configure and assign a separate throttling policy with no limits for the account. Of course, a bad behaving application could then run without boundaries from a resource perspective, something throttling policies try to limit.
  • In Exchange 2010 and up, impersonation leverages Role Based Access Control, which is better manageable than a collection of distributed  ACEs.
  • Actions performed by the impersonator are on behalf of the impersonated. This may complicate auditing, as logging will come up with actions performed by the impersonated user, not the impersonator.

Note that where ‘user’ is specified below with regards to granting permissions, one could also specify a security group as well unless mentioned otherwise.

Impersonation on Exchange 2007

On Exchange 2007, you configure impersonation by granting the following two permissions:

  • The ms-Exch-EPI-Impersonation permission grants the impersonator the right to submit impersonation calls. It is configured on Client Access Servers. This does not grant the impersonation right, just the right the make the call through a CAS server.
  • The ms-Exch-EPI-May-Impersonate when granted, allows the impersonator to impersonate selected accounts.

To configure these permissions in your Exchange 2007 environment, use:

Get-ClientAccessServer | Add-AdPermission –User svcExchangeScripts –ExtendedRights ms-Exch-EPI-Impersonation

Then, we can configure impersonation permission on the mailbox level:

Get-Mailbox Tintin| Add-ADPermission –User svcExchangeScripts –ExtendedRights ms-Exch-EPI-May-Impersonate

on the database level:

Get-MailboxDatabase MailboxDB1 | Add-ADPermission –User svcExchangeScripts –ExtendedRights ms-Exch-EPI-May-Impersonate

or mailbox server level:

Get-MailboxServer MailboxServer1 | Add-ADPermission –User svcExchangeScripts –ExtendedRights ms-Exch-EPI-May-Impersonate

Be advised that members of the various built-in Admin groups are by default explicitly denied impersonation permissions on the server and database level, and deny overrules allow. You will notice this when querying impersonation configuration settings, for example on the database level (in the screenshot example, olrik was granted impersonation permissions):

Get-MailboxDatabase | Get-AdPermission | Where { $_.ExtendedRights –like ‘ms-Exch-EPI-Impersonation’} | Format-Table Identity, User, Deny, IsInherited, ExtendedRights –AutoSize

image

Note that permissions assigned on the mailbox may not immediately be reflected as you are administering them in Active Directory. Changes in Active Directory are subject to AD replication, and the Exchange Information Store caches information for up to 2 hours, so worst case it may take up to 2 hours and 15 minutes for new permission settings to be re-read from Active Directory.

Impersonation on Exchange 2010 and 2013

Exchange 2010 introduced Role Based Access Control, better known by its acronym RBAC. For a quick introduction to RBAC, see one of my earlier blogs here. There is a management role associated with impersonation, which is ApplicationImpersonation.

To enable a user impersonation rights, create a new assignment for ApplicationImpersonation and assign it to the user:

New-ManagementRoleAssignment –Name 'AIsvcExchangeScripts' –Role ApplicationImpersonation –User svcExchangeScripts

Note that if we want to assign these permissions to a security group, we need to use the SecurityGroup parameter instead of User, specifying the group name.

Now be careful, when used like this you will have granted that user or group permission to impersonate all users in your Exchange organization. Here is where RBAC comes into play, or more specific the RBAC feature named management role scopes. With write scopes for example, you can limit the scope of where you can make changes in Active Directory. For more information on management role scopes, see here.

Let  us assume we want to limit the scope to a distribution group named ‘All Employees’, using New-ManagementScope in combination with RecipientRestrictionFilter. Note that when specifying MemberOfGroup in the filter, you need to use the distinguishedName of the group:

New-ManagementScope –Name 'Employee Mailboxes' –RecipientRestrictionFilter { MemberOfGroup –eq 'CN=All Employees,OU=Distribution Groups,OU=NL,DC=contoso,DC=com'} 

We can then apply this scope to the assignment created earlier:

Set-ManagementRoleAssignment –Identity 'AIsvcExchangeScripts' –CustomWriteScope 'Employee Mailboxes'

Be advised that in a multi-forest environment, impersonation doesn’t work when you assign permissions to cross-forest accounts. You either need to assign impersonation permissions to an account residing in the same forest as Exchange, or create a linked role group.

Impersonation on Exchange Online

Impersonation is available in most Office 365 plans, but currently not in the small business plans.  To configure Impersonation in Exchange Online we need to connect anyway, so we’ll first open a remote PowerShell session to Exchange Online:

$EXO= New-PsSession -ConfigurationName Microsoft.Exchange -ConnectionUri https://ps.outlook.com/powershell -AllowRedirection -Authentication Basic
Import-PsSession $EXO

Provide tenant administrator credentials when prompted. You can then see if you have the ApplicationImpersonation role at your disposal using:

Get-ManagementRole –Identity ApplicationImpersonation

If nothing is returned, you may need to resort to delegate access permissions.

Configuring impersonation is identical to configuring it in Exchange 2013. Nonetheless, some people may be more comfortable using the Exchange Admin Center. If so:

  1. Open up Exchange Admin Center.
  2. Navigate to Permissions > Admin Roles
  3. Now we can’t directly assign a management role through EAC, so assume we’ll create a role group for our application account by clicking New (+).
  4. Enter a name for your role group, e.g. ExchangeMaintenanceScripts.
  5. Add the role ApplicationImpersonation.
  6. Add the accounts which need Impersonation permissions, e.g. svcExchangeScript.
  7. Optionally, you can also select a Write Scope, which you need to create upfront through Exchange Management Shell.
  8. In Exchange on-premises, instead of a Write Scope you will have the option to select a a specific OU instead (scope filter RecipientRoot parameter) .
  9. When done, Save.

image

One word of caution: scopes are not automatically updated when objects referenced are relocated or change names. Now, for your own environment you may have this under control through some form of change management process. For Exchange Online however, your tenant might get relocated without notice. Therefor, should impersonation fail, verify any management scopes you may have defined for distinguishedName references, and check if they require updating, e.g.

Set-ManagementScope -Name 'All Employees' -RecipientRestrictionFilter { MemberOfGroup -eq 'CN=All Employees,OU=contoso.onmicrosoft.com,OU=Microsoft Exchange Hosted Organizations,DC=EURPR05A001,DC=prod,DC=outlook,DC=com'}

Final words

Note that many EWS-based scripts or tools do not natively support EWS but make use of the Exchange Web Services Managed API. This installable package consists of support files (e.g. DLL’s) which provide EWS functions to your PowerShell environment. You can download the current version of EWS Managed API here (2.2). You can read more on developing with EWS Managed API here, or you can have a peek at the source of code of one of my EWS scripts or the ones published by Exchange MVP-fellow Glen Scales’ here.

Script Updates


powershellA small heads-up for those not following me on Twitter of one of the other social media channels. Last week I made updates to the following three scripts:

Install-Exchange2013.ps1, version 1.72

  • Added CU5 support
  • Added KB2971467 (CU5 Disable Shared Cache Service Managed Availability probes)

Remove-DuplicateItems.ps1, version 1.3

  • Changed parameter Mailbox, you can now use an e-mail address as well.
  • Added parameter Credentials.
  • Added item class and size for certain duplication checks.
  • Changed item removal process
  • Remove items after, not while processing folder. Avoids asynchronous deletion issues.
  • Works against Office 365.

Remove-MessageClassItems.ps1, version 1.3

  • Changed parameter Mailbox, you can now use an e-mail address as well
  • Added parameter Credentials
  • Added parameter PartialMatching for partial class name matching.
  • Changed item removal process. Remove items after, not while processing folder. Avoids asynchronous deletion issues.
  • Works against Office 365.
  • Deleted Items folder will be processed, unless MoveToDeletedItems is used.
  • Changed EWS DLL loading, can now be in current folder as well.

Be advised I keep am overview of the scripts and their current versions with publish dates here.

 

Get-MyMailboxStatistics


powershellLast update: Version 1.02, November 21st, 2014.

Those leveraging quota settings to manage their Exchange environments, you are probably periodically running some sort of script or set of cmdlets to retrieve information on mailbox sizes, quota settings and if any mailbox is above any of the quota thresholds. For a quick indication of the current size in relation to the quota settings, StorageLimitStatus may contain one of the following indicators depending on the quota settings on the mailbox or mailbox database hosting the mailbox:

  • BelowLimit – Speaks for itself
  • IssueWarning – Mailbox size above Issue Warning limit
  • ProhibitSend – Mailbox size above Prohibit Send limit
  • NoChecking – No quota checking
  • MailboxDisabled – Mailbox size above Prohibit Send and Receive quota limit

So, to get a list of all mailboxes with any over-quota status, you can use:

Get-MailboxDatabase | Get-MailboxStatistics | Where {$_.StorageLimitStatus -match 'IssueWarning|ProhibitSend|MailboxDisabled'} | Select DisplayName, ItemCount, TotalItemSize, StorageLimitStatus, LastLogonTime

Unfortunately, in Exchange 2013 the StorageLimitStatus gets no longer populated:

image

As KB2819389 explains, this is by design. In Exchange 2013, mailbox quotas are no longer cached. By not being cached, retrieving quota information may result in poor performance as it queries Active Directory for quota related attributes. The argument is a bit puzzling, considering there is a NoADLookup switch which directs the cmdlet to retrieve information from the mailbox database (cache) instead of Active Directory. Perhaps a better workaround would have been to make NoADLookup a parameter, make it $true by default and leave StorageLimitStatus unpopulated when NoADLookup is $true.

Of course, that does not help customers who want a quick quota report. For this purpose I have created two things in 1 script:

  1. A helper function Get-StorageLimitStatus() which will take a mailbox statistics object and return a StorageLimitStatus object.
  2. A script Get-MyMailboxStatistics.ps1, a proxy function for Get-MailboxStatistics which will use the Get-StorageLimitStatus helper function to populate the StorageLimitStatus.

Get-StorageLimitStatus
When you want to use the helper function, extract it and include it in your quota reporting script or PowerShell profile (making it available when firing up a shell). To use the helper function in the cmdlet shown earlier, use:

Get-MailboxDatabase | Get-MailboxStatistics | Select -ExcludeProperty StorageLimitStatus DisplayName, ItemCount, TotalItemSize, @{n="StorageLimitStatus"; e={ Get-StorageLimitStatus $_}}, LastLogonTime | Where {$_.StorageLimitStatus -match 'IssueWarning|ProhibitSend|MailboxDisabled'}

This will remove StorageLimitStatus from the output and add a calculated field bearing the same the name, calling the Get-StorageLimitStatus helper function with the current mailbox statistics object to set its value.

Get-MyMailboxStatistics.ps1
This is a proxy function for the Exchange Management Shell cmdlet Get-MailboxStatistics. This means that the current, original cmdlet was used to create a wrapper which will call the original cmdlet. Having a wrapper allows you to restrict or enhance the original cmdlet and tailor it to your needs.

A quick tip on how to create a proxy script in the clipboard (more information on creating proxy commands here):

$data= New-Object System.Management.Automation.CommandMetaData (Get-Command Get-MailboxStatistics) 
[System.Management.Automation.ProxyCommand]::create($data) | clip.exe

Downside is that future changes to the Get-MailboxStatistics cmdlet will not be automatically incorporated in the wrapper. Feeding it objects also doesn’t work, but you can work around that by temporary storing the objects in a variable and passing that to the script (see examples below).

To populate the StorageLimitStatus, we will post-process each object in the output of Get-MailboxStatistics, using Add-Member to overwrite (-Force) its current value and –PassThru to pass it along in the pipeline. Being a proxy command, the parameter options are identical to the original Get-MailboxStatistics. Some examples:

.\Get-MailboxStatistics.ps1 -Database MDB2
$m= Get-Mailbox –Database MDB2 
$m | .\Get-MailboxStatistics.ps1 | ft –AutoSize DisplayName,TotalItemSize,StorageLimitStatus

image

Do be aware that this will incur Active Directory queries and thus performance of the script may not seem fast. However, in previous versions of Exchange you got immediate results as all the quota information was readily available from the cache. On the plus side, the status you see will be non-cached, current information.

On a final note and maybe needless to say that in order to use this you need to run it from the Exchange Management Shell and since it’s an unsigned script you need to set ExecutionPolicy to Unrestricted.

Feedback
Feedback is welcomed through the comments. If you got scripting suggestions or questions, do not hesitate using the contact form.

Download
You can download the script from the TechNet Gallery here.

Revision History
See Technet Gallery page.