EWS.WebServices.Managed.Api


A short blog on the EWS Managed API and using the latest version with scripts leveraging Exchange Web Services (EWS), such as my Remove-DuplicateItems script. The installable EWS Managed API library was last updated in 2014 (version 2.2, reports as v15.0.913.22), and there have been few enhancements since then. These are included in the EWS.WebServices.Managed.Api package, which carries version 2.2.1.2.

Although this library was last updated in 2019, you might still need it to successfully run EWS scripts. The EWS.WebServices.Managed.Api package supports some Exchange Web Services calls which are not supported in the 2.2 version, and may lead to error messages like Exception calling “FindFolders” with “2” argument(s) or other messages related to the (number of) arguments. This may be an indication a particular call was used to one of the EWS functions, but which is not supported by the installed EWS Managed API library. In those cases, installing this updated library might help.

The library is published on NUGet as a package. To install the package, we first need to register NuGet as a Package Source:

Register-PackageSource -provider NuGet -name nugetRepository -location https://www.nuget.org/api/v2

Next, install the package from the newly defined NuGet source:

Install-Package Exchange.WebServices.Managed.Api

The package installs by default under C:\Program Files\PackageManagement\NuGet\Packages. I have updated my scripts to include this location when searching for the required Microsoft.Exchange.WebServices.dll as well. Alternatively, you can copy this DLL from the ..\Exchange.WebServices.Managed.Api.<Version>\lib\net35 folder to the location where the script resides. When running my EWS-based scripts in Verbose mode, it will report as version 2.2.1.0.

Hopefully this blog will potentially save you some time troubleshooting, and myself answering some support messages. Enjoy!

Exchange Online Management using EXOv2 module


Exchange2019Logo

Update (3sep2022) Updated reflect Azure AD app roles.

Early June, Microsoft released a new PowerShell module
for managing Exchange Online. This module got announced at Ignite 2019 already, but it took
few months between going into preview end of last year before it finally reached Generally Available status. Usage of this module offers substantial improvements over the existing methods to connect to Exchange Online using Powershell, such as:

  • Leveraging the PowerShell module ecosystem to install and update the module. This as opposed to the click-to-run Microsoft Exchange Online Powershell Module or connecting through PowerShell remoting.
  • Support for Multi-Factor Authentication. This is something which the click-to-run module also offers but is not available when using PowerShell remoting.
  • Robustness. Existing sessions could easily timeout when you took a short break from the console. Or worse, your script could terminate in the middle of execution. This required you to reconnect or forced you to add resilience to your scripts by handling with these disconnects from the back end. The cmdlets of the EXOv2 module should be more robust and resilient.
  • Introduction of the Graph API support, which should show improvements in terms of speed. Microsoft indicated an 4-8 times improvement should be achievable, but your mileage may vary depending on the operation.
  • Support for PowerShell 6/7, core, and non-Windows operating systems is coming.

Exchange Online Management v2 module

The module has been baptized EXOv2 to indicate a major change compared to the click-to-run module (hereafter referred to as EXOv1), and also because it uses Graph API, just like the AzureAD v2 module. The module is available in the PowerShell Gallery, and installation is straightforward. Open a PowerShell 5.1 or later session in elevated mode and run:

Install-Module ExchangeOnlineManagement

The EXOv2 cmdlets which are REST-based and and leverage Graph API have their nouns prefixed with ‘EXO’, e.g. Get-EXOMailbox. Currently, there are 9 EXO cmdlets in the GA module, as well as few additional ones (more on those later). The regular commands such get Get-Mailbox are available as well after connecting to Exchange Online. This is similar behavior to the EXOV1 module, e.g.

Connect-ExchangeOnline [-UserPrincipalName <UPN>]

When required, satisfy the Multi-Factor Authentication logon process, and you
are done. Be advised that the EXOv2 module also supports
Delegated Access
Permissions
(DAP), allowing partners to connect to customer tenants by
specifying
-DelegatedOrganization <mycustomer.onmicrosoft.com>
when connecting.

Also note that apart from the EXO cmdlets, the current module also offers few other interesting commands and helper functions apart from the ones for housekeeping:

  • Connect-IPPSSession to connect to Security & Compliance center or Exchange Online Protection, depending on licensing. This command was also available in EXOv1.
  • Get-UserBriefingConfig & Set-UserBriefingConfig. These are a bit out of context, as these commands allow you to enable or disable the Cortana Briefing for users.
  • IsCloudShellEnvironment indicates if you are running from PowerShell or Azure Cloud Shell, which might be useful in scripts to determine the current context.

The EXOv2 cmdlets and their regular equivalents are shown in the table below:

EXO v1 or Remote
PowerShell
EXO v2
Get-MailboxGet-EXOMailbox
Get-MailboxFolderPermissionGet-EXOMailboxFolderPermission
Get-CASMailboxGet-EXOCASMailbox
Get-MailboxFolderStatisticsGet-EXOMailboxFolderStatistics
Get-MailboxPermissionGet-EXOMailboxPermission
Get-MobileDeviceStatisticsGet-EXOMobileDeviceStatistics
Get-RecipientGet-EXORecipient
Get-RecipientPermissionGet-EXORecipientPermission

What you might notice is the absence of any Set-EXO* cmdlets. This is true, and there is no word yet on if and when Set cmdlets will be introduced. That said, the biggest speed gain is often in bulk retrieval of data, not so much in altering one or more attributes. Until then, do not
de
spair though, as you can pipe output of the EXO cmdlets to their regular cmdlet,
e.g.

Get-EXOMailbox michel | Set-Mailbox -EmailAddresses @{Add='michel@myexchangelabs.com'}

This construction will also provide the additional benefit of parallel processing of objects as they pass through the pipeline, but more on that later.

Now comes another thing you should be aware of, and that is that these EXOv2 cmdlets might not use the same parameter sets as their v1 equivalent. Simply said, you cannot perform a simple Find and Replace operation in your script replacing Get-Mailbox with Get-EXOMailbox to start enjoying benefits of the new module.

When running a cmdlet like Get-EXOmailbox, you might notice that it returns only a subset of the attributes you might expect. Similar to what Properties does for Active Directory module, the EXOv2 module requires you to specify the individual Properties to return. Alternatively, you can use PropertySets to select a predefined set of attributes. For example, Get-EXOMailbox supports PropertySets such as All, Minimum (default), Policy, Quota and Retention to name a few. When needed, you can combine PropertySets, so something like the following is possible:

Get-EXOMailbox -Identity michel -PropertySets Quota,Policy

A small note on the PropertySet All: Just like Get-ADUser .. -Properties
*
is considered bad practice as you can impact resource usage and usually return more than what you need, using -PropertySets All
for every call is also a bad idea. All is convenient, but make sure you only return the data you need. Be a good person.

To see which EXOv2 cmdlets support PropertySets, use:

(Get-Command -Noun EXO* -Module ExchangeOnlineManagement).Where{$_.Parameters.propertySets}

Performance

Now, I suppose we want to get an indication of the performance enhancements by comparing EXOv2 and equivalent operation using v1 cmdlets. In this simple example we are returning quota information for some 50.000 mailboxes:

In this case, it is not the 4-8x improvement, but more than twice as fast is significant nonetheless. Especially if you are running interactively. To see the impact of parallel processing in the pipeline, we run the following:

As shown, there is a substantial increase in performance, but of course your mileage may vary depending on things like the number of objects, the attributes you require, and any filtering
applied.
Note that the PropertySet StatisticsSeed used in the example is a very minimal set of attributes which you can use if you only wish the refer to the objects, such as userPrincipalName, primarySmtpAddress and externalDirectoryObjectID.

Speaking of filtering, one would expect that server-side filtering (-Filter) would show an improvement in terms of speed over client-side filtering (Where), as filtering at the source is far more efficient in terms of result set and data to send over. However, it seems that due to the nature of a shared environment, sending superfluous data over the wire is less of a penalty than local filtering. Of course, your mileage may also vary here, so experiment what works best for your situation. Also, not every attribute is supported for filtering with these EXO cmdlets, which lies in how Graph exposes data. More information on that here.

When your session times out or disconnects, you will see that the module tries to reconnect your session; something which you would have to programmatically solve for the v1 module or regular remote PowerShell:

Certificate-based Authentication

Exchange administrators often have a requirement to run unattended scripts against Exchange Online, for example scheduled reports or as part of another process. In the past, this lead to setups where service accounts and stored credentials were used. Later this was improved by the ability to apply Conditional Access to limit these logons to on-premises infrastructure.

The problem with Multi-Factor Authentication is that it requires interaction with end-user to approve the sign-on. Of course, while your token is still valid, you can easily (re)connect to Exchange Online just by providing the Username Principal Name, which will reuse the token if it didn’t expire. But all in all, these solutions are high maintenance, and far from ideal from a security perspective.

Here comes certificate-based authentication, which is supported in version 2.0.3 and up of the EXOv2 module. In short, certificate-based authentication allows you to log on to Exchange Online using:

  • PowerShell
  • EXOv2 module
  • A (self-signed) certificate containing private key
  • Enterprise App registration in Azure Active Directory which contains the public key of this certificate, and proper assigned Azure AD role(s).

Note: Enterprise app registration may require Azure AD P1/P2 license.

To install the EXOv2 2.0.3 version of the module (preview at time of writing), use:

Install-Module ExchangeOnlineManagement -AllowPrerelease

Note that it might complain if you have the GA version of the module installed, in which case you need to uninstall the GA module first, or you can install them side-by-side by specifying -Force.

Next, we need to create a self-signed certificate. To accomplish this, we can use the script published here. To create the certificate, simply use:

.\Create-SelfSignedCertificate.ps1 -CommonName 'EXOv2' -StartDate 7/30/2020 -EndDate 7/30/2021

Note that you need to provide a password to protect the PFX file containing the private key. Also do not forget to import the PFX in your local certificate store. When importing, you can mark the certificate as non-exportable, which prevents admins to transfer the certificate to other systems.

Import-PfxCertificate -CertStoreLocation Cert:\CurrentUser\My -FilePath .\EXOv2.pfx -Password (Read-Host -AsSecureString)

After importing, you can check for the certificate’s presence using:

Get-ChildItem Cert:\CurrentUser\My | Where {$_.Subject -eq 'CN=EXOv2'}

The Subject should be the CommonName you used when generating the certificate. The thumbprint of our certificate is 49A4A73B4696718676770834BCD534DE35030D2C. We are going to use this later on to connect.

Now we need to set things up in Azure Active Directory:

  1. Open up the Azure Active Directory Portal, and navigate to Active Directory.
  2. Select App registrations, and click New registration.
  3. Give the App a meaningful Name, and select Accounts in this organizational directory only. Set Redirect URI to Web and leave the URL blank. Then, click Register.

    clip_image013[4]

    Note that our App has been assigned an Application (Client) ID. Make note of this value, as we will need it to connect later on.
  4. Next, we need to configure the App permissions. Select API permissions. User.Read should show up as default. Click Add a permission, and locate Office 365 Exchange Online from the APIs my organization uses tab. Select Application permissions, and in the next screen expand Exchange and check Exchange.ManageAsApp. We are done here, so click Add permissions.
  5. Only thing left now is to Grant admin consent, which can be done by clicking Grant admin consent for <tenant>. When done, the Status column for Exchange.ManageAsApp permission should have changed to Granted for <tenant>.

    API Permissions
  6. Now we need to associate this App with out certificate. Select Certificates & Secrets, and click Upload certificate. Pick the certificate file which we generated earlier, and select Add.

    clip_image017[4]
  7. Last step is to assign the App one of the built-in Azure AD roles. Go to the Azure Active Directory blade, and select Roles and administrators. To manage Exchange Online using PowerShell, you need to assign the Exchange Administrator role; for Security & Compliance, you can assign the Compliance Administrator role.

    Select the desired role(s), and click Add assignments in the assignments overview screen. Note that when picking security principals, the App might not show up initially, and typing its first few letters might help. Click Add to assign the role.

    clip_image019[4]
    Note that the UserName mentioned in the overview is the Application ID.

Now we are done configuring the back end, we can look again at connecting. This should now be as simple as running:

Connect-ExchangeOnline -CertificateThumbprint '49A4A73B4696718676770834BCD534DE35030D2C' -AppId '0d3f8f4c-34fb-4a22-8466-80fd7379593b' -Organization '<tenant>.onmicrosoft.com'

Where:

  • CertificateThumbprint is the thumbprint of the self-signed certificate you created earlier.
  • AppID is the Application (Client) ID of the registered App.
  • <tenant>.onmicrosoft.com the initial domain name of your tenant.

Note that you can also connect specifying the CertificateFile instead of Thumbprint, but then you need to provide the password as well via CertificatePassword. Having the certificate in the certificate store of the administrator account or account running the task and just specifying the thumbprint is more convenient and requires zero interaction.

If all steps above were followed correctly, you should now be connected to Exchange Online, without any MFA interaction.

A final note is that Connect-IPPSSession mentioned earlier does not support certificate-base authentication.

What about other Workloads

You can use the same certificate-based authentication to connect to several other workloads as well. That is, provided you have installed the required PowerShell module and the Azure AD role you assigned to the Application has adequate permissions. You can use the commands below to connect to these workloads. A small note that the commands to connect may use a different parameter names for AppId or Organization, e.g. AppId, ApplicationId or ClientId and Organization and TenantId are same things in the examples below.

AzureAD (2.x or Preview)

Connect-AzureAD -CertificateThumbprint '49A4A73B4696718676770834BCD534DE35030D2C' -ApplicationId '0d3f8f4c-34fb-4a22-8466-80fd7379593b' -TenantId '<tenant>.onmicrosoft.com'

MicrosoftTeams (GA or Test)

Connect-Microsoftteams -CertificateThumbprint '49A4A73B4696718676770834BCD534DE35030D2C' -ApplicationId '0d3f8f4c-34fb-4a22-8466-80fd7379593b' -TenantId '<tenant>.onmicrosoft.com'

Microsoft Graph

Connect-Graph -CertificateThumbprint '49A4A73B4696718676770834BCD534DE35030D2C' -ClientId '0d3f8f4c-34fb-4a22-8466-80fd7379593b' -TenantId '<tenant>.onmicrosoft.com'


Audit

The logons which are performed in the context of the Application are viewable in the Azure Sign-Ins at https://aka.ms/iam/rtsp

Note that this view is currently in preview, and there might be a slight delay before logon shows up.

Final Notes

It would be nice if there would be a way to incorporate Exchange granular Role-Based Access Control model into the permissions model. Granting Apps only the built-in Azure AD roles is somewhat limiting, and it would be nice to restrict accounts in only being able to run the cmdlets and parameters they need to use.

When running Exchange cmdlets, you will find these in the audit log but with the <tenant>\AppID as UserName. Therefore, best thing to do is to use a single App registration for each individual administrator or process, instead of using a single App registration and multiple certificates.

And finally, it would be nice if the various teams would align their cmdlet and parameter naming schemes for consistency.

 

Comparing Sets of Cmdlets


powershellWith the speed of development in Office 365, it is sometimes hard to track which changes have been made to your tenant. Of course, there is the roadmap and message board which you can use to keep up to date, but those are in general high level descriptions. Sometimes you may want to see what are the changes at the cmdlet level in your tenant, between tenants, or Azure Active Directory module. And there is also the occasional gem in the form of a yet undocumented cmdlet or parameter which could hint at upcoming features.

For this purpose I have created a simple script which has two purposes:

  1. Export information on the current cmdlets available through Exchange Online or Azure Active Directory.
  2. Compare two sets of exported information, and display changes in a readable way.

The script is in PowerShell (of course), and is called Compare-Cmdlets.ps1. To export information, you need to be already connected to either Exchange Online or Azure Active Directory (or both).

To export cmdlet information, use:

.\Compare-Cmdlets.ps1 –Export

For Exchange Online and Azure Active Directory, separate export files are created. The files are prefixed with a timestamp and postfixed with the Exchange Online build or Azure Active Directory module version, e.g. 201803121814-ExchangeOnline-15.20.548.21.xml or 201803121815-AzureAD-2.0.0.137.xml.

After a few days/week, or when connected to another tenant or using a new Azure Active Directory PowerShell module, run the export again. You will now have 2 sets of Exchange Online or Azure Active Directory cmdlets, which you can compare using the following sample syntax:

Compare-Cmdlets.ps1 -ReferenceCmds .\201801222108-ExchangeOnline-15.20.428.21.xml -DifferenceCmds .\201803120926-ExchangeOnline-15.20.548.21.xml

image

A progress bar is shown as comparison might take a minute. When the script has finished checking the two sets, you will see output indicating changes in cmdlets, parameters or switches, e.g.

image

Download
You can find the script on the TechNet Gallery or GitHub.

Exchange admins & PowerShell


imageMany people I encounter in the field of Office 365 or Exchange have an infrastructure background. That is, they know a lot about their product(s), how to make it work (or don’t), how to manage, deploy or troubleshoot, etcetera.

Then there is, the let us call it, the reality check of the cloud era, with a roller coaster of cloud-originating developments. This requires a different management focus for these products, resulting in products architected for scale, and introducing configuration and management instruments primarily designed to be ready for automation and operate on scale as well. PowerShell support in Microsoft products is such an instrument.

The introduction of PowerShell required folks with an infrastructure background to develop a new skill: instead of clicking buttons in an interface, they should also become a PowerShell practitioner. Not necessarily wizard level, but at least they need to know their way around when managing their environment using PowerShell, reading and interpreting scripts provided by Microsoft or other vendors prior to usage, or even make changes to make those scripts fit for their own environment.

Writing scripts is another matter. This requires a tad different mindset, where you make repeatable tasks repeatable (time-saving), less prone to error (job-saving), and reusable by your coworkers or even the community who may need to perform the same task. Of course, everybody also expects your scripts to be generic (no hard-coded elements), robust and resilient, adding 90% more code (a bit exaggerated, but you get the idea).

What most of administrators struggle with, is making the connection between managing the product using PowerShell, and how to start using PowerShell to develop their own set of scripts or tools to automate tasks their environment. Administrators wanting to learn such skills will usually find is great books about the product, and great books on learning (generic) PowerShell. Of course, existing scripts found using their favorite search engine can also be a great starting point, provided somebody already developed it for the task you are trying to accomplish.

With the Exchange Server 2016 administrator in mind, Exchange fellows Dave Stork and Damian Scoles tried to bridge that gap with their book, Practical PowerShell: Exchange Server 2016. It uses some practical Exchange-themed examples, how to approach the problem, and how to go from running a few cmdlets in sequence to developing small scripts which operate against one or multiple servers. Also, while this book aims at the on-premises Exchange administrators, the skills learned are not lost when the organization moves to Exchange Online as these scripting skills are compatible.

Knowing how difficult it can be to transfer knowledge to paper from my own experience, I think Dave & Damian did a respectable job. The timing of the book release is also interesting, as the product which introduced PowerShell to so many of us, Exchange Server 2007, is going End of Life soon, on April 2011, 2017 to be exact. Realizing PowerShell has been around now for so many years, there is no excuse to get your PowerShell skills going, unless you want to share the faith of dinosaurs.

More information on the book, including a sample chapter, is available at https://www.practicalpowershell.com. You can also order the book from Amazon here.

Results Install-Exchange15 survey


stats chartA short blog on a small survey I’ve been running for some time now on the usage of Install-Exchange15, the PowerShell script for fully automated deployment of Exchange 2013 or Exchange 2016.

I started the survey because I was curious on a few things:

  • How the script is used; do folks use it for deploying in lab environments, or also actual production environments.
  • What Exchange versions are deployed; only current ones (n-2 at most, i.e. lagging 2 Cumulative Update generations at most), or also older versions.
  • What operating systems are used to deploy Exchange using this script.

The second and last items are of most interest, as keeping backward compatibility in the script, for example like deploying Exchange Server 2013 SP1 on Windows Servers 2008, requires keeping a lot of ‘legacy code’ in there.

Fortunately, the survey shows many of you use the script to deploy recent Exchange builds on current operating systems. So, in time, you will see support for older builds and operating systems being removed, making the script more lean and mean as well.

Now, on to the results:

In what environments do you use the script to deploy Exchange?

Lab

Production

Yes

86%

72%

No

14%

28%

Do you use Install-Exchange15.ps1 for previous (N-2 or older) Exchange 2013/2016 builds?

Yes 28%
No 72%

On which Operating Systems do you deploy Exchange 2013/2016? (multiple options possible)

Windows Server 2008 0%
Windows Server 2008 R2 18%
Windows Server 2012 18%
Windows Server 2012 R2 100%
Windows Server 2016 8%

Finally, a summary of the feedback and requests send in by respondents through the open comments section:

  • Installation on Windows Server 2016. The survey was created before Windows Server 2016 was supported, so we used the feedback given on people deploying on WS2016 in the above results.
  • In general, positive feedback on having this script for automated deployment, as well as the SCP feature.
  • Request for having a GUI to create the answer file.
  • Request to having the option to configure the virtual directories after installation. However, the script allows for inserting custom (Exchange) cmdlets in its post-configure phase.
  • Request to output cause of failed Exchange setup to the screen. That however, is something I wouldn’t recommend; the Exchange setup log files contain the details.
  • Request to have some sort of visible clue if the installation was successful or not.